Auditory Access for Infants and Toddlers Utilizing Personal FM Technology

EHDI Conference February 26, 2008 New Orleans

Johnnie Sexton, MS/CCC-A Project EARS johnniesexton@yahoo.com

Thanks to Dr. Jane Madell Beth Israel Medical Center, NYC

AMPLIFICATION ASSUMPTIONS

- Early/appropriate amplification
 - is the single most important habilitative tool.\
 - is dependent on the child, and communication environment and NOT hearing loss

AMPLIFICATION ASSUMPTIONS

- When the talker and listener are close and it is quiet
 - Standard hearing aids work well for patients with mild to severe hearing loss
 - Cochlear implants work well for patients with severe and profound hearing loss

AMPLIFICATION ASSUMPTIONS

 An *FM system* will improve auditory access for <u>EVERY PERSON</u> with impaired auditory function by reducing the negative effects of distance and noise.

GOAL OF ASSISTIVE TECHNOLOGY

- Improve auditory access
- Improve access to language
- Lay foundation for auditory academic learning
- Facilitate socialization
- Facilitate information access/extended learning
- Safety

TECHNOLOGY GOALS

• In summary,

- Reduce sensory deprivation
- Maximize use of residual hearing
- Provide input for auditory learning

FACTORS THAT EFFECT AUDITORY LEARNING AND PERCEPTION

- Hearing loss
- Access to auditory information
- Auditory deprivation
- Language
- Amplification
- Auditory environment
- Which of these can we control?

WHEN IS AMPLIFICATION NEEDED?

- When talker and listener are more than a few feet apart
- Difficult listening situations
- School
- Car
- Dinner table
- When sick or tired
- When hearing is fluctuating
- Any situation in which listening is critical

WHY FM?

FM Improvement (with CI) 24 Children

	Mean improvement	Range
35 dB in quiet	24%	8-44%
50 dB +5 S/N	23%	8%-60%
50 dB 0 S/N	19%	8-24%
35 dB 0 S/N	31%	20-68%

Data from Beth Israel Medical Center, NY, NY; compliments of Dr. Jane Madell, Director

Accessing the Auditory Environment

- Distance between a parent and child
- Background noise ongoing
- Poor acoustics (reverberation)

The Distance Problem

Distance is a great obstacle to speech understanding

 Audibility and intelligibility decrease as the distance from the speaker increases

 At a certain distance, the background noise can effectively mask the talker's voice

Sources Of Noise at Home

Home Noise **People talking** Heating systems **Cooling systems Appliances Movement of furniture** Toys

External Noise Traffic Aircraft Wind Playgrounds **Sirens**

What Is Signal-To-Noise Ratio?

Also Called Speech-To-Noise Ratio

• Signal-to-noise ratio (SNR)

- relationship between the primary auditory signal to background sounds
- The more favorable the SNR, the more intelligible the spoken message

• Adults with normal hearing

- require a SNR of approximately +6 dB in order to hear the spoken message as consistently intelligible.
- desired signal needs to be about *twice as loud* as background sounds.

Children

- Children
 - need a much more favorable signal-tonoise ratio in order to receive intelligible speech
 - SNR needs to be approximately +15 dB to +20dB
 - <u>desired signal needs to be about 10 times</u> <u>louder than background sounds!</u>

Children who need improved SNR

- Typical children
- Children with
 - any type and degree of hearing problem
 - ear infections
 - unilateral hearing loss
 - auditory processing problems.
 - learning disabilities
 - attention problems
 - visual disabilities
 - behavior problems
 - developmental disabilities
 - first language is not the language of the speaker

Unfortunately, typical classrooms have an *inconsistent* and poor signal-to-noise ratio of about +4 dB.

 A classroom's signal-to-noise ratio can vary minute by minute from about +5 dB to worse than -20dB, depending on teacher and pupil positions and background noise.

Reverberation

- Reverberation is the reflection of sound waves off of hard surfaces
 - high ceilings
 - untreated windows
 - chalk boards
 - concrete
 - tile floors

Implications

Reduced Language

Two Ways to Manage, Improve, and Control the Signal-To-Noise Ratio (SNR)

• Positioning:

- Remain, <u>physically</u>, as close as possible to the desired sound source -- ideally within 6 inches
- This can work well for an infant who is being carried
- <u>Unfortunately</u>, physical positioning does not work in many situations where talker and child cannot remain in fixed positions

If you cannot remain consistently very close to the child, use a remote wireless microphone:

 A remote microphone, placed or worn within 6 inches of the desired sound source, allows the listener to remain, technologically close to the talker while providing a physical extension of distance hearing.

CLOSE MICROPHONE

- Reduces negative effect of
 - distance
 - noise
 - poor acoustic environment
- Improved ability to attend to an auditory task

DO PEDIATRIC AND ADULT EVALUATIONS DIFFER?

- Do you need a complete audiogram?
- Are electroacoustic and real ear data sufficient?
- Do children need to hear different things than adults?
- Monaural vs binaural?
- FM?

FM's for Infants

- Noisy homes
- Reduced negative effect of distance
- Reduced negative effect of noise
- Improved speech signal
- Increased parental output

The Evaluation Process

- Selection
- Verification
- Validation

Selection

- Not all systems are equal
- What works for one child may not be best for another child
- No one FM solution meets all needs

Internal FM Receiver Configurations

Ear level
HA with integrated FM
CI with integrated FM
(Not yet)
FM only

Internal FM Receiver Configurations • Body –Button transducers –BTE transducers

Soundfield – Room

– Personal

External FM Receiver Configurations

 Integrated audio shoe +FM receiver

Two pieces
 – (audio shoe + FM receiver)

• Cube adaptor (for CI only)

• Body worn FM

- Direct audio input (DAI)
- Neckloop
- Silhouette
Factors in Making a Selection

- Internal Receivers
 - Pros
 - Fewer parts
 - Ease of use
 - Ease of maintenance
 - Compatibility is assured
 - Cons
 - If something breaks the whole system is down
 - Inability to wear primary device alone

Factors in Making a Selection

- External Receivers
 - Pros
 - Can use primary device alone
 - Can use FM alone if HA is being repaired
 - Can put FM onto different HA if HA is being sent for repair or a new HA is purchased
 - Cons
 - Easier to loose parts
 - More possible parts for repair
 - Compatibility and connectivity
 - May require additional battery
 - If device is agency owned where can it be used?

Receiver Selection Decisions

Direct input system

 Always with the child
 Always in the appropriate place
 Monitoring issues with CI

Receiver Selection Decisions

- Room soundfield system
 - Provides assistance to everyone in the room
 - Works best when close to the loudspeaker
 - Easily monitored
 - Not best for HI kids

Receiver Selection Decisions

- Personal desk top system

 No compatibility problems with HA or CI
 Can be easily monitored
 Must be carried around room as child moves
 - Not appropriate for infants

Transmitters

- Boom
- Lavaliere
- Clip on
- Hand held
- Table top

Factors in Making a Selection

- Transmitters – Boom
 - Pros

- Always in the correct position
- Noise cancelling
- Cons
 - May interfere with lipreading
 - Not popular with teachers

• Lavaliere

- Pro's
 - 2nd best choice for placement
 - Ease of use by teacher or speaker
 - Microphone options degrees of directionality
 - Reminder to parents to TALK, TALK, TALK
- Con's
 - Some people do not like wearing things around their necks
 - External noise from clothing, jewelry etc

- Clip on
 - Pro's
 - People like it

- Microphone options for degrees of directionality
- Con's
 - Almost always in the wrong place
 - External noise from clothing, jewelry etc
 - Microphone cord serves as the antenna so it has to be fully extended to work optimally
 - Greater potential for the microphone cord to break

- Hand Held
 - Pro's

- Can be easily handed to different speakers
- Con's
 - Talker needs to remember to hold near mouth
 - Requires one hand intrudes on talker's freedom of movement
 - Potential for external noise
 - Not possible with young children

Table top

- Pro's
 - Picks up signal from multiple speakers who are close
- Con's
 - Signal is not as good as that from a close mic
 - Not appropriate for infants and toddlers

Recommendations

- Infants (less than 8 months)

 Less than severe HL may not need FM
 Severe to profound HL
 Body worn integrated FM/HA (button transducers)

 Reduces feedback
 More durable
 - BTE HA with FM only if you do not need to reduce high frequencies because of feedback

Our Recommendations

Toddlers

- BTE HA with FM
 - Select HA first to provide optimal benefit
 - If integrated FM is available great
 - If FM and audio shoe are integrated very good
- Body worn system if needed to reduce feedback
- -CI + FM

Transmitters

- Boom mic
- Lavaliere
- Clip on with lots of direction

The FM Evaluation

- Electroacoustic measures
- Real Ear measures
- Behavioral measures

FM VERIFICATION Electroacoustic Measures

- FM performance with HA's should be verified through the use of real ear or 2cc coupler measurements
- The signal used to verify the FM performance should be the same one used to verify the hearing aid performance
- Contact FM and/or HA Test Box Manufacturers for specific procedures

POINTS TO REMEMBER

- Because of compression in both the hearing instrument and the transmitter, "transparency" of the FM may not be possible
- When adjusting the gain and output of the FM signal you MUST consider the greater input level into the FM microphone due to placement.
 - 80 dB SPL rather than 65 dB SPL for a boom or chest level mic
- The manner in which the FM transmitter will be used must be considered when adjusting the FM gain.

ADJUSTING FM GAIN

ADJUSTING FM GAIN

FM gain control 14dB range

FITTING AN FM (cont.)

- ASHA recommends 3 fitting strategies or protocols for FM fittings (Guidelines for Fitting and Monitoring FM Systems, ASHA 2003)
 - Equal Output
 - Equal Gain

- 10 dB FM advantage

DEMONSTRATING BENEFIT

- Electroacoustic measurements
- Real ear measurements
- Are we done yet?

DEMONSTRATING FUNCTIONAL BENEFIT

Factors

- 1. Test room set-up
- 2. Microphone placement
- 3. Test materials
- 4. Hearing aid/CI alone (R, L, B)
- 5. FM and HA/CI

Behavioral Measures

• Is it loud enough?

- Soundfield noise band thresholds
 - unaided
 - With technology Right, Left, Binaural, + FM
- Speech thresholds
 - Music
 - Ba, Sh, S
 - Spondee words or objects
 - Familiar objects
 - Body parts

Speech Perception Is it clear?

- Infants VRISD
- Toddlers
 - Monosyllabic words
 - Sentences
 - Potato Head task
 - Picture
 - Repeat back

Test Conditions

Monosyllabic words

- 50 dB HL Quiet
- 35 db HL Quiet
- 50 dB HL +5 SNR
- Sentences
 - 50 dB HL Quiet
 - 35 db HL Quiet
 - 50 dB HL +5 SNR
 - 50 dB HL +10 SNR

Selecting Speech Test Materials

- Goal of the evaluation
 - Obtain the best possible test results
 - Compare to typical peers
 - Compare to other HI peers
 - Monitor progress
 - Monitor auditory learning
 - Monitor function in different listening conditions

FM - CI Evaluation

	CI (R) (L)	CI or HA (R) (L)	CI+HA CI + CI	CI+HA+FM CI+CI+FM	Test Stimulus
Warble tone					
500 Hz					
1000 Hz					
1500 Hz					
2000 Hz					
3000 Hz					
4000 Hz					
Speech Perception/Quiet					
50 dBHL					
35 dBHL					
Speech Perception/Noise					
50 dB + 5 S/N					

Functional Listening Evaluation (Adapted from Johnson and Von Alman)

	Close/Quiet	Close/Noise	Distant/Quiet	Distant/Noise
CI Alone				
CI + FM				

Analyze the results

- Speech perception with FM + HA or CI should be better than HA or CI alone for soft speech
- Speech perception with FM + HA or CI should be better than HA or CI alone for speech in noise
- Speech perception in noise via the "FM alone" (receiver set to FM only) should be significantly greater than that obtained in noise with hearing aid or CI alone

INDIRECT MEASURES

- Sifter
- Pre School Sifter
- Hearing Performance Inventory for Children
- LIFE
- MAIS, ITMAIS
- Monitoring language levels

Summary

- The FM fitting protocol used should be determined by how the FM transmitter will be used
- FM gain for hearing aids should be verified via real ear or 2cc coupler measurements
- FM Benefit should be demonstrated through behavioral testing including thresholds measures and speech perception testing in noise and quiet

Mark

- Normal hearing (PTA R 7 dB, L 6 dB)
- Word recognition
 - 50 dB (quiet) 100%
 - 35 dB (quiet)
 - 50 dB +5 S/N
 - 50 dB 0 S/N
 - 35 dB 0 S/N

84% 64% 44%

84%

Josh

•	Mild conductive hearing loss					
	– AC	right 20 dB		left 15 dB		
	– BC	right 4 dB		left 6 dB		
•	 Word recognition 					
	– 50 dB ((quiet)	100%			
	– 35 dB	(quiet)	84%			
	– 50 dB ·	+5 S/N	88%			
	– 50 dB (0 S/N	64%			
	– 35 dB (O S/N	56%			

Lizzy 12 yrs

PTA Right 65 dB Left 74 dB

	Binaural	FM
50 dB	88%	100%
35 dB	52%	92%
50 dB+5 SNR	70 %	92%

AVI 4 yrs PTA Right 84 dB Left 92 dB Binaural FM 100% 100% PBK 50 dB 35 dB 92% 72%
David 4 yrs

PTA Right 104 dB Left 102 dB

		Binaural	FM
NU CHIPS	Standard	64%	90%
NU CHIPS	open set	56%	76%
AB lists	vowels		90%
	consonants		70%
	Whole word	ds	50%

A.S. 9 yrs

NU 6	Right	Left	Bin	FM
50 dB	72%	54%	80%	72%
live voice				
50 dB			66%	
recorded				
35 dB			68%	60%
live voice				
50 dB +5 S/N			64%	54%

When should an FM be primary amplification?

- When hearing aids do not provide sufficient auditory access.
- When in a noisy environment.
- Pre Cl

OTHER FM ISSUES

- Wide band vs narrowband
- Multiple microphones
- Appropriate use of FM system
- Counseling (parents, teachers, family)
- Troubleshooting
- Preventive Maintenance

Thank you!

